Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

четверг, 10 сентября 2015 г.

(Ф7) Архимед


АРХИМЕД (ок. 287–212 до н.э.), величайший древнегреческий математик и механик.

Жизнь.

Уроженец греческого города Сиракузы на острове Сицилия, Архимед был приближенным управлявшего городом царя Гиерона (и, вероятно, его родственником). Возможно, какое-то время Архимед жил в Александрии – знаменитом научном центре того времени. То, что сообщения о своих открытиях он адресовал математикам, связанным с Александрией, например Эратосфену, подтверждает мнение о том, что Архимед являлся одним из деятельных преемников Евклида, развивавших математические традиции александрийской школы. Вернувшись в Сиракузы, Архимед находился там вплоть до своей гибели при захвате Сиракуз римлянами в 212 до н.э.
Дата рождения Архимеда (287 до н.э.) определяется исходя из свидетельства византийского историка 12 в. Иоанна Цеца, согласно которому он «прожил семьдесят пять лет». Яркие картины его гибели, описанные ЛивиемПлутархоми Валерием Максимом, различаются лишь в деталях, но сходятся в том, что Архимеда, занимавшегося в глубокой задумчивости геометрическими построениями, зарубил римский воин. Кроме того, Плутарх сообщает, что Архимед, «как утверждают, завещал родным и друзьям установить на его могиле описанный вокруг шара цилиндр с указанием отношения объема описанного тела к вписанному», что было одним из наиболее славных его открытий. Цицерон, который в 75 до н.э. был на Сицилии, обнаружил выглядывавшее из колючего кустарника надгробие и на нем – шар и цилиндр.
Легенды об Архимеде.
В наше время имя Архимеда связывают главным образом с его замечательными математическими работами, однако в античности он прославился также как изобретатель различного рода механических устройств и инструментов, о чем сообщают авторы, жившие в более позднюю эпоху. Правда, авторство Архимеда во многих случаях вызывает сомнения. Так, считается, что Архимед был изобретателем т.н. архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов, хотя, судя по всему, такого рода устройство использовалось и раньше. Не внушает особого доверия и то, что рассказывает Плутарх в Жизнеописании Марцелла. Здесь говорится, что в ответ на просьбу царя Гиерона продемонстрировать, как тяжелый груз может быть сдвинут малой силой, Архимед «взял трехмачтовое грузовое судно, которое перед этим с превеликим трудом вытянули на берег много людей, усадил на него множество народа и загрузил обычным грузом. После этого Архимед сел поодаль и стал без особых усилий тянуть на себя канат, перекинутый через полиспаст, отчего судно легко и плавно, словно по воде, «поплыло» к нему». Именно в связи с этой историей Плутарх приводит замечание Архимеда, что, «если бы имелась иная Земля, он сдвинул бы нашу, перейдя на ту» (более известный вариант этого высказывания сообщает Папп Александрийский: «Дайте мне, где стать, и я сдвину Землю»). Вызывает сомнение и подлинность истории, поведанной Витрувием, что будто бы царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. «Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»)».
Более достоверным представляется свидетельство Паппа, что Архимеду принадлежало сочинение Об изготовлении [небесной] сферы, речь в котором шла, вероятно, о построении модели планетария, воспроизводившей видимые движения Солнца, Луны и планет, а также, возможно, звездного глобуса с изображением созвездий. Во всяком случае Цицерон сообщает, что тот и другой инструмент захватил в Сиракузах в качестве трофеев Марцелл. Наконец, Полибий, Ливий, Плутарх и Цец сообщают о грандиозных баллистических и иных машинах, построеннных Архимедом для отражения римлян.

Математические труды.

Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактатыО шаре и цилиндреОб измерении кругаО коноидах и сфероидахО спиралях иО квадратуре параболы. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигурО плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теоремИсчисление песчинокЗадача о быках и сохранившийся лишь в отрывках Стомахион. Существует еще одна работа – Книга о предположениях (или Книга лемм), сохранившаяся лишь в арабском переводе. Хотя она и приписывается Архимеду, в своем нынешнем виде она явно принадлежит другому автору (поскольку в тексте имеются ссылки на Архимеда), но, возможно, здесь приведены доказательства, восходящие к Архимеду. Несколько других работ, приписываемых Архимеду древнегреческими и арабскими математиками, утеряны.
Дошедшие до нас работы не сохранили своей первоначальной формы. Так, судя по всему, I книга трактата О равновесии плоских фигур является отрывком из более обширного сочинения Элементы механики; кроме того, она заметно отличается от II книги, написанной явно позднее. Доказательство, упоминаемое Архимедом в сочинении О шаре и цилиндре, было утрачено ко 2 в. н.э. Работа Об измерении круга сильно отличается от первоначального варианта, и предложение II в ней скорее всего заимствовано из другого сочинения. ЗаглавиеО квадратуре параболы вряд ли могло принадлежать самому Архимеду, так как в его время слово «парабола» еще не использовалось в качестве названия одного из конических сечений. Тексты таких сочинений, как О шаре и цилиндре и Об измерении круга, скорее всего, подвергались изменениям в процессе перевода с дорийско-сицилийского на аттический диалект.
При доказательстве теорем о площадях фигур и объемах тел, ограниченных кривыми линиями или поверхностями, Архимед постоянно использует метод, известный как «метод исчерпывания». Изобрел его, вероятно, Евдокс (расцвет деятельности ок. 370 до н.э.) – по крайней мере, так считал сам Архимед. К этому методу время от времени прибегает и Евклид в XII книге Начал. Доказательство с помощью метода исчерпывания, в сущности, представляет собой косвенное доказательство от противного. Иначе говоря, утверждение «А равно В» считается истинным в том случае, когда принятие противоположного утверждения, «А не равно В», ведет к противоречию. Основная идея метода исчерпывания заключается в том, что в фигуру, площадь или объем которой требуется найти, вписывают (или вокруг нее описывают, либо же вписывают и описывают одновременно) правильные фигуры. Площадь или объем вписанных или описанных фигур увеличивают или уменьшают до тех пор, пока разность между площадью или объемом, которые требуется найти, и площадью или объемом вписанной фигуры не становится меньше заданной величины. Пользуясь различными вариантами метода исчерпывания, Архимед смог доказать различные теоремы, эквивалентные в современной записи соотношениям S = 4pr2 для площади поверхности шара, V = 4/3pr3 для его объема, теореме о том, что площадь сегмента параболы равна 4/3 площади треугольника, имеющего те же оcнование и высоту, что и сегмент, а также многие другие интересные теоремы.

Комментариев нет:

Отправить комментарий